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Big Data 
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Big Data 

30 fps, ~50MB/minute, geo-located, network 
connected (social or provider) 

8 Years! 
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All the data in the world cannot tell you what will happen next 

“You cannot Google the future” 
            William Gibson  
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§ Physical Processes: Calibrate model parameters using observed data 
to minimize difference between model outputs and observations 

§ Statistical: Rely on distribution theory to estimate/predict new 
observations from collected data (e.g., regression) 

§ Machine Learning: Non-linear process for learning from observations 
for classification or prediction 

Models + Data 
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§ Pipe networks supply fresh water to cities 
§ As much as 70% of that water is lost to 
leaks 

– Costs of energy and of chemicals 

§ Traditional approach 
– Listen for leaks during quiet times 

§ Newer approaches 
– Acoustic sensors 
– High frequency pressure waves 

§ What about Data + Models ? 
– Pressure and Flow 

Example 1: Leak Localization 
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Leak Localization at sub-DMA Level 

§ Goal: localize leaks within a single District Metered Area (DMA) 
– Medium resolution: Determine subset of DMA with leak(s) 
– Use results to limit search area for crews/sensors with acoustic monitoring 

§ Approach:  
– Use sensors (flow and/or pressure) within the DMA 
– Use measured and estimated demands at network nodes 
– Employ state estimation and correlation of residuals 

§ Requirements: 
– Calibrated network model of DMA 
– Continuous monitoring of flow and/or pressure data 
– Measured or estimated demands at nodes 

§ Result: 
– Determine subset of DMA for exhaustive search for leak 
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Finding leaks in Water Distribution Networks (WDNs) 
 

•  Acoustic methods  
– High precision of detection and localization 
– Sensors must be relatively close to leak 

(depending on material) 

•  Transient methods 
– Analyze hydraulic transients in high-freq 

signals 
– Suited for transmission (vs distribution) 

systems 

   
 

• http://www.vivax-metrotech.com/UploadFiles/image/HL10(2).JPG 

• What has been measured & modeled? 

• Where to look? 

Where to dig? 

 
•  Analytics and Optimization 

–  Use hydraulic model and pressure/flow sensors 
–  Need knowledge of demands 
–  Estimate leaks by matching model predictions 

with sensor readings  
 

- High-frequency sensors 
- Large deployment 
- Extensive coverage of WDN 

- Hydraulic model 
- Demand profiles 
- Low-freq hydraulic sensors 
- Sparse coverage of WDN 
 

- Suspicious areas 
- Targeted use of high-freq   
   sensing equipment 
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Leak Localization 

§ Estimate demands at service connections 
– Census data, Billing records, Mapping data 

§ Use, or develop, calibrated network model 
– Total supply and demand amounts 
– Pressure and/or flow measurements 

§ State Estimation 
– Demands as the estimated state 

§ Residual Analysis 
– Large negative residuals indicate non-revenue water 
– Correlated residuals due to all demands impacted by leak 
– Cluster network into areas impacted by leak 
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•  Fusco, Eck and McKenna, 2014, Bad Data Analysis with Sparse Sensors for Leak Localisation in Water Distribution Networks, 
International Conference on Pattern Recognition 

•  Fusco, Eck and McKenna, 2014, Identifying leakage likelihood using state estimation and bad data identification methods, Water Loss 
Conference 

•  McKenna, Fusco and Eck, 2013, Water Demand Pattern Classification From Smart Meter Data, Computing and Control for the Water 
Industry 
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Our solution: 
Demand Modeling, State Estimation and Residual Analysis (2) 

Network Model 
Sensor Data  
(pressures, flows,...) 

Demand Modeling 
(Prior/expected demand) 

+ - 

Demand 
Residuals 

 

Statistical Analysis  
of Residuals 

Estimated  
Demand 

 State Estimation 
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Residual Analysis (1): Identify network areas 

• Residuals are difference between measured (expected) and estimated hydraulic 
quantities 

–  Leakage produces demand residuals (“unexpected demand”) →   

• Depending on the position/number of sensors and on the level of uncertainty 
–  Groups of residuals may be strongly correlated 

•  Leaks at different locations look “similar” with respect to sensor data and produce “similar” residual patterns 

–  Advanced statistical analysis of residuals identifies these groups (network areas) 

End Result: 
Segmentation of DMA into regions 
operating as expected and regions 
most likely to have leaks 
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Example 2: Distributed Renewable Energy Forecasting 

Bloomberg.com 

Germany, Sunday, May 15th, 2016 

http://www.bloomberg.com/news/articles/2016-05-16/germany-just-got-almost-all-of-its-power-from-renewable-energy 
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Energy 

“There  will  be  more  changes  in  the  nex4  10  years  than  there  have  been  in  the  last  100!  

We  are  in  an  age  of  discover=;  we  must  challenge  the  boundaries  of  prevailing  wisdom!”  

– Jeff Martin, CEO of San Diego Gas and Electric, 
   DistribuTech keynote, February 2015 
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Trends   
 Rise of Renewables 
 IOT and Big Data   
 Uncertainty 

 
Examples of Data-Driven Operations 
 
What’s next? 

Outline 
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§ Growth. In the OECD countries renewables 
account for virtually all net additions to 
power capacity 

§ Solar. Further decline in the cost of PV 
technology will drive a $3.7 trillion surge in 
investment in solar, both large-scale and 
small-scale. 

§ Distributed. Some $2.2 trillion of this 
investment will go on local PV systems, 
enabling consumers and businesses the 
ability to generate and store electricity 

Rise of Renewables 

Sources: 
•  2105 Bloomberg New Energy report: http://www.bloomberg.com/company/new-energy-outlook/ 
•  Executive Summary of IEA Renewable Energy Medium Term Market Report 2015 
•  Graphic:  http://www.skepticalscience.com/ipcc-report-renewable-energy.html 
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Data explosion dwarfs “traditional” data sources 

•  Future business model depends on making use of this data rather than selling kWHrs 
•  We need demand to follow supply by exploiting flexibility in the demand 

Hyper-local weather data  
+ weather-driven supply  

and demand data 

Utility grid IoT data 
200 Petabytes 

Annually 

150 PB 
 Annually 

Asset records 
50 TB 

Traditional customer records 
5 TB 
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Uncertainty: Demand 

p(x) = e(t)dt ⇒ p(x) = e(t) ⋅c(t)dt∫∫
Increasingly distributed nature of electricity production and consumption leads to 
increasingly distributed (personalized) pricing  
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§ For Distributions System Operators and 
Transmission System Operators, uncertainty in 
power generation and demands are significant 
under distributed generation scenarios 

§ Predictive models must also quantify 
uncertainty 

Uncertainty and Predictive Models  
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§ Work with a regional transmission utility in the US 
– Serving 17 distribution utilities 

§ Strong government incentives to deploy rooftop solar (PV) 
– As much as 10 percent of electricity from solar (2015) 

§ Questions regarding rooftop PV 
– Where is it in the grid? 
– How much is there? 
– How much energy will be produced tomorrow? 
– What is the uncertainty in that forecast? 

Example 2: Distributed Renewable Energy Forecasting 
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Solar Forecasting 
Example (State Level) 

We combine physical models with machine learning to 
model PV generation at town, county and state level. 

 

The physical model uses a solar position algorithm, 
irradiance and temperature data and an Irradiance-to-
power model. 

  

This physical model is combined with a Generalized 
Additive Model (GAM), trained on measured PV power 
data. 
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Data Driven 

Consider

Capture

Collect

Clarify

Combine

Analytics

High Value Insights

Big Data from Many Sources

70%

30%

Bottom Up Approach 

Data 
Curation 
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Predicting Demands (Substation Scale) 

The contribution of PV generation can be significant at the substation level. 
 
 This can cause reverse power flows. 
 
Accurately predicted by our models. 

Residual Demand = Delivered - Returned 

•  Distributed Generation and Demand 
•  Bottom Up 
•  Data Driven 
•  ~1500 models 
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Prediction Complexity 

The impact of increases in generation 
capacity and snowfall are not well captured 
by physical models. Machine learning 
helps. 
 

We can predict PV generation with an error 
of better than 10% over a dynamic range 
of factor 10 
 

The Effect of Snow 

Dynamic Range = 10 
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Nature of Distributed Energy 
G
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 Solar Farms > 1MW 

Distributed PV 

Hourly Measurements 
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Smart Meter Analytics 

Total PV capacity in Vermont: 
§  Based on AMI and available SCADA 
§ Missing: approx. 5-10 MW distributed PV 

July 1-31, 2015 
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40 

60 

80 
MWh Peak 88.6MWh, July 3, 12:00 – 1:00 p.m. 

System type Number Capacity (MWh) Capacity %
Utility-scale 
(>1MW)

22 41.6 46.9%

Medium
(25KW-1MW)

161 20.5 23.2%

Residential
(<25KW)

6,081 26.5 29.9%
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§ Weather forecasts for critical business operations 
– Renewable energy 
– Insurance 
– Aviation 
– Agriculture 

§ Impacts of weather 
– Decision making from forecasts 
– Multi-dimensional vs. One-dimensional impact 

Example 3: Weather Forecasting 

IBM Acquired The Weather Company in January 2016 
TWC is a data company 
Internet of Things (IoT) 
Spatial-Temporal Data 

Global forecasting capability 
Business models: B2C and B2B 
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High-Resolution Weather Forecasting 

§ Goal: High-resolution weather forecasting at specific time and location 
– Spatial scales of 1x1 km and temporal scale of 10 minute time steps 
– Forecasts out to 72 hours in advance 

§ Approach:  
– 3D physics model of weather  
– Assimilation of real time observational data into forecasts 
– Cloud-based implementation 

§ Requirements: 
– Coarse-scale forecasts (e.g., NOAA, ECMWF) 
– Observational data 

§ Result: 
– High resolution, on-demand forecasts anywhere in the world 
– Applications for flood forecasting and storm water runoff 

27 
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Deep Thunder Example: Dublin Ireland 
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Forecast of clouds 
 
Color scale shows 
cumulative rainfall on 
ground 
 
Arrows show 
direction of wind and 
velocity (color scale) 
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Cognitive Computing 
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Individualized, ranked, evidence based treatment 
options at the point of care.  Watson extracts 

patient case attributes and provides supporting 
rationale for the treatment options.  

 

Other innovative recipes conjured up by Watson 
include coconut-flavored Caribbean Snapper Fish & 
Chips, Belgian Bacon Pudding, and the Austrian 
Chocolate Burrito with lean ground beef and two 
ounces of dark chocolate. 
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Cognitive Computing: Urban Systems 
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How much snow? 

River Flows 

Rainfall  

Electricity Prices 

Consumer Demands 

Network Flows 

Road Construction 

Maintenance Schedules 

Asset Condition 

Regulatory Constraints 

Security 

Traffic Jam 

Tank Levels 

Storm Water Drains 

How do I best operate 
the city today? 

How do I make decisions 
today to improve operations 

in the future 

Bus Driver Strike 

Interest Rates 

Leakage Rates 

Effluent Quality 

Population Growth 

Citizen Complaints 

Fuel Costs 
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Summary 

§ Models are required for predictions 
– Combining different classes of models for improved predictions  

§ Data + (Physics) Models 
– Water: Aging infrastructure, more data, extend lifetime 
– Energy: More solar, more data, uncertainty remains 
– Weather: Storms impact multiple infrastructure systems 

§ Cognitive (Self-learning) Models 

31 
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Sean A. McKenna 
seanmcke@ie.ibm.com 


