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Big Data

Where does big data come from?
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Big Data

30 fps, ~50MB/minute, geo-located, network
connected (social or provider)

8 Years!
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All the data in the world cannot tell you what will happen next

“You cannot Google the future”
William Gibson
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Models + Data

»Physical Processes: Calibrate model parameters using observed data
to minimize difference between model outputs and observations

»Statistical: Rely on distribution theory to estimate/predict new
observations from collected data (e.g., regression)

*Machine Learning: Non-linear process for learning from observations
for classification or prediction
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Example 1: Leak Localization

" Pipe networks supply fresh water to cities

* As much as 70% of that water is lost to
leaks
—Costs of energy and of chemicals

* Traditional approach
—Listen for leaks during quiet times

* Newer approaches
—Acoustic sensors
—High frequency pressure waves

= |What about Data + Models ?
—Pressure and Flow

© 2015 IBM Corporation




Leak Localization at sub-DMA Level

» Goal: localize leaks within a single District Metered Area (DMA)
—Medium resolution: Determine subset of DMA with leak(s)
—Use results to limit search area for crews/sensors with acoustic monitoring

= Approach:
—Use sensors (flow and/or pressure) within the DMA

—Use measured and estimated demands at network nodes
—Employ state estimation and correlation of residuals

» Requirements:
—Calibrated network model of DMA
—Continuous monitoring of flow and/or pressure data
—Measured or estimated demands at nodes

= Result:
—Determine subset of DMA for exhaustive search for leak

© 2015 IBM Corporation



Finding leaks in Water Distribution Networks (WDNs)

*What has been measured & modeled?

T . = Hydraulic model
i - Demand profiles
i - Low-freq hydraulic sensors
. - Sparse coverage of WDN

- High-frequency sensors
- Large deployment
- Extensive coverage of WDN

Wh e re tO d | 9 " Acoustic methods

) h
y r E’ /E — High precision of detection and localization

— Sensors must be relatively close to leak
(depending on material)

* Transient methods

— Analyze hydraulic transients in high-freq

*\Where to Ib'?

*http://www.vivax-metrotech.com/UploadFiles/image/HL10(2).JPG
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- Suspicious areas
- Targeted use of high-freq

— Estimate leaks by matching model predictions sensing equipment
with sensor readings :

— Need knowledge of demands
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L e a k L O Ca I izati O n . Average Demands, Sensor: 06738428

= Estimate demands at service connections
—Census data, Billing records, Mapping data

» Use, or develop, calibrated network model
—Total supply and demand amounts A
—Pressure and/or flow measurements e oioay )

Gaussian Fits, Sensor: 06738428

= State Estimation
—Demands as the estimated state

» Residual Analysis
—Large negative residuals indicate non-revenue water
—Correlated residuals due to all demands impacted by leak | \
—Cluster network into areas impacted by leak

Time (hours)

* Fusco, Eck and McKenna, 2014, Bad Data Analysis with Sparse Sensors for Leak Localisation in Water Distribution Networks,
International Conference on Pattern Recognition

* Fusco, Eck and McKenna, 2014, Identifying leakage likelihood using state estimation and bad data identification methods, Water Loss
Conference

* McKenna, Fusco and Eck, 2013, Water Demand Pattern Classification From Smart Meter Data, Computing and Control for the Water

Industry
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Our solution:
Demand Modeling, State Estimation and Residual Analysis (2)
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Residual Analysis (1): Identify network areas

* Residuals are difference between measured (expected) and estimated hydraulic

T s

— Leakage produces demand residuals (“unexpected demand”) —
* Depending on the position/number of sensors and on the level of uncertainty

— Groups of residuals may be strongly correlated
» Leaks at different locations look “similar” with respect to sensor data and produce “similar” residual patterns

— Advanced statistical analysis of residuals identifies these groups (network areas)

Node index

End Result:
: Segmentation of DMA into regions
I operating as expected and regions
o ’ ~ most likely to have leaks

60
Node index
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Example 2: Distributed Renewable Energy Forecasting

Germany, Sunday, May 15", 2016
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. Conventional power plants Solar . Wind Water ‘ Biomass — Electricity Consumption

Bloomberg.com

http://www.bloomberg.com/news/articles/2016-05-16/germany-just-got-almost-all-of-its-power-from-renewable-energy
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Energy

“There will be more changes in the next 10 years than there have been in the last 100!

We are in an age of discovery; we must challenge the boundaries of prevailing wisdom!”

Jeff Martin, CEO of San Diego Gas and Electric,
DistribuTech keynote, February 2015

© 2015 IBM Corporation 13
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Outline

Trends
Rise of Renewables
|OT and Big Data

Uncertainty

Examples of Data-Driven Operations

What's next?

© 2015 IBM Corporation



IBM Research - Ireland

Rise of Renewables

= Growth. In the OECD countries renewables

1976

account for virtually all net additions to N broduced Sicon P bt
power capacity . W Onshore Wi Powes Pl
= Solar. Further decline in the cost of PV g I
technology will drive a $3.7 trillion surge in 3
investment in solar, both large-scale and : e 2010
small-scale. s T o SR S
= (4.3 USDW) "2l 2009
= Distributed. Some $2.2 trillion of this - [

investment will go on local PV systems,
enabling consumers and businesses the
ability to generate and store electricity

1,000 10,000 100,000 1,000,000
Cumulative Global Capacity [MW]

Sources:

» 2105 Bloomberg New Energy report:

+ Executive Summary of IEA Renewable Energy Medium Term Market Report 2015

* Graphic:
© 2015 IBM Corporation 15
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Data explosion dwarfs “traditional” data sources

Utility grid loT data

200 Petabytes

Annually

Hyper-local weather data
+ weather-driven supply
and demand data

150 PB

Annually

records

Traditional customer records

5TB

« Future business model depends on making use of this data rather than selling kWHTrs
« We need demand to follow supply by exploiting flexibility in the demand

© 2015 IBM Corporation 16
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Uncertainty: Demand

p(x)=[e(tydt = p(x)=[e(t) c(t)dt

Increasingly distributed nature of electricity production and consumption leads to
increasingly distributed (personalized) pricing

© 2015 IBM Corporation 17
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Uncertainty and Predictive Models Solar Farm Power Forcasting (A1)

* For Distributions System Operators and
Transmission System Operators, uncertainty in
power generation and demands are significant
under distributed generation scenarios

» Predictive models must also quantify
uncertainty

P — o
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Example 2: Distributed Renewable Energy Forecasting

»\Work with a regional transmission utility in the US
—Serving 17 distribution utilities

» Strong government incentives to deploy rooftop solar (PV)
—As much as 10 percent of electricity from solar (2015)

= Questions regarding rooftop PV
—Where is it in the grid?
—How much is there?
—How much energy will be produced tomorrow?
—What is the uncertainty in that forecast?

© 2015 IBM Corporation
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PV Power
IBM Research - Ireland

Solar Forecasting
Example (State Level)

2000 4000 6000 8000

0

We combine physical models with machine learning to
model PV generation at town, county and state level.

Latitude

The physical model uses a solar position algorithm,
irradiance and temperature data and an Irradiance-to-
power model.

=73.5 =73.0 =725 ]
Longitude

This physical model is combined with a Generalized
Additive Model (GAM), trained on measured PV power
data.

© 2015 IBM Corporation

Irradiance
2014-09-10 12:20:00

—73.5 -73.0 —-72.5 —72.0 —7.5
Longitude
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Data Driven

Bottom Up Approach

© 2015 IBM Corporation

Big Data from Many Sources

Data
Curation

21
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Predicting Demands (Substation Scale)
The contribution of PV generation can be significant at the substation level.

This can cause reverse power flows. Residual Demand for a substation in Vermont

— Forecast

Accurately predicted by our models. | — Measurement

Uncertainty

Distributed Generation and Demand
Bottom Up

Data Driven

~1500 models

Residual Demand = Delivered - Returned

© 2015 IBM Corporation 22
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Prediction Complexity

State 2015-02-08 06:00:00

The impact of increases in generation
capacity and snowfall are not well captured
by physical models. Machine learning
helps.

The Effect of Snow

PV Generateion (MW)
5 10 15 20 25 30

0

We can predict PV generation with an error
of better than 10% over a dynamlc range
of factor 10 g \

=
c
S
[
o
©
o
©
c
L]
(O]
>
o

© 2015 IBM Corporation 28



IBM Research - Ireland

Nature of Distributed Energy

Solar Farms > 1MW
Distributed PV

Generation (MWh/h)

Hourly Measurements

© 2015 IBM Corporation 24
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Smart Meter Analytics

Total PV capacity in Vermont:
= Based on AMI and available SCADA
» Missing: approx. 5-10 MW distributed PV

MWh Peak 88.6MWh, July 3, 12:00 — 1:00 p.m.
80
60 Utility-scale 46.9%
(>1MW)
40 Medium : 23.2%
(25KW-1MW)
20 Residential : : 29.9%

(<25KW)

July 1-31, 2015

© 2015 IBM Corporation 25
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Example 3: Weather Forecasting

= \Weather forecasts for critical business operations

—Renewable energy
—Insurance
—Aviation
—Agriculture

* Impacts of weather

—Decision making from forecasts
—Multi-dimensional vs. One-dimensional impact

© 2015 IBM Corporation

Weather >
Company»

IBM Acquired The Weather Company in January 2016

TWC is a data company
Internet of Things (loT)
Spatial-Temporal Data

Global forecasting capability
Business models: B2C and B2B




High-Resolution Weather Forecasting

» Goal: High-resolution weather forecasting at specific time and location
—Spatial scales of 1x1 km and temporal scale of 10 minute time steps
—Forecasts out to 72 hours in advance

= Approach:
—3D physics model of weather
—Assimilation of real time observational data into forecasts
—Cloud-based implementation

» Requirements:
—Coarse-scale forecasts (e.g., NOAA, ECMWF)
—Observational data

= Result;

—High resolution, on-demand forecasts anywhere in the world
—Applications for flood forecasting and storm water runoff

© 2015 IBM Corporation



Deep Thunder Example: Dublin Ireland
IBM Deep Thunder for Dublin 05-Feb#@Di4 - F

Surface Total Precipitation and Winds Forecast of clouds

Cloud Water Density at 1.0e-04 kg/kg

140

Color scale shows
cumulative rainfall on
ground

120

Arrows show
direction of wind and
velocity (color scale)

((///(6’/7/7 )4

Copyright IBM 2013

© 2015 IBM Corporation 28



Cognitive Computing

f—— T T
—

Individualized, ranked, evidence based treatment
options at the point of care. Watson extracts
patient case attributes and provides supporting
rationale for the treatment options.

Era =

Other innovative recipes conjured up by Watson
include coconut-flavored Caribbean Snapper Fish &
Chips, Belgian Bacon Pudding, and the Austrian
Chocolate Burrito with lean ground beef and two
ounces of dark chocolate.

© 2015 IBM Corporation 29



Cognitive Computing: Urban Systems

Leakage Rates

Road Construction Asset Condition Traffic Jam

Population Growth How much snow?

Interest Rates

ow do | best operate Consumer Demands
the city today?

Citizen Complaints Network Flows

How do | make decisions

Rainfall today to improve operations Regulatory Constraints
in the future

Fuel Costs Eloctricity Pr
ectricity Prices
River Flows ~ 1ank Levels
Maintenance Schedules Security Storm Water Drains

Bus Driver Strike Effluent Quality

© 2015 IBM Corporation 30



Summary

» Models are required for predictions
—Combining different classes of models for improved predictions

» Data + (Physics) Models
—Water: Aging infrastructure, more data, extend lifetime
—Energy: More solar, more data, uncertainty remains
—Weather: Storms impact multiple infrastructure systems

= Cognitive (Self-learning) Models

© 2015 IBM Corporation
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