

The Role of Models in Smarter Cities Solutions

Sean A. McKenna, PhD, IBM Research, Dublin Ireland, seanmcke@ie.ibm.com

© 2015 IBM Corporation

ted workin of

LINE CONTRACTOR

and antimuctured data

50

¥

700

.

.3

8

Worldwide IP traffic will

3 billion people

will be online, pushing the data

created and shared to nearly

8 zeltabytes.

quadruple by 2015

By 2015, nearly

72.9

其

Big Data

Where does big data come from?

Most big data efforts are currently focused on analyzing internal data to extract insights.

Big Data

<image>

30 fps, ~50MB/minute, geo-located, network connected (social or provider)

8 Years!

All the data in the world cannot tell you what will happen next

"You cannot Google the future" William Gibson

Models + Data

Physical Processes: Calibrate model parameters using observed data to minimize difference between model outputs and observations

Statistical: Rely on distribution theory to estimate/predict new observations from collected data (e.g., regression)

 Machine Learning: Non-linear process for learning from observations for classification or prediction

Example 1: Leak Localization

Pipe networks supply fresh water to cities

 As much as 70% of that water is lost to leaks

-Costs of energy and of chemicals

- Traditional approach
 Listen for leaks during quiet times
- Newer approaches

 Acoustic sensors
 High frequency pressure waves

What about Data + Models ? Pressure and Flow

Leak Localization at sub-DMA Level

Goal: localize leaks within a single <u>District Metered Area</u> (DMA)

- -Medium resolution: Determine subset of DMA with leak(s)
- -Use results to limit search area for crews/sensors with acoustic monitoring
- Approach:
 - -Use sensors (flow and/or pressure) within the DMA
 - –Use measured and estimated demands at network nodes
 - -Employ state estimation and correlation of residuals

Requirements:

- -Calibrated network model of DMA
- -Continuous monitoring of flow and/or pressure data
- -Measured or estimated demands at nodes

Result:

-Determine subset of DMA for exhaustive search for leak

Finding leaks in Water Distribution Networks (WDNs)

•What has been measured & modeled?

anivater Intel Gene kanne kanne Kanne Key Hesserment Kalar kot Trend Gene I of 20 Jahren Fuese. Char (filer Consult Pressure Logger 155 (Ersesare Logger Philips) 48.5 mps 😵 2012/82/2012/32

- Hydraulic model
- Demand profiles
- Low-freq hydraulic sensors
- Sparse coverage of WDN

•Where to look?

http://www.vivax-metrotech.com/UploadFiles/image/HL10(2).JPG

- High-frequency sensors - Large deployment - Extensive coverage of WDN

Acoustic methods

- High precision of detection and localization
- Sensors must be relatively close to leak (depending on material)
- Transient methods
- Analyze hydraulic transients in high-freq signals
- Suited for transmission (vs distribution) systems

• Analytics and Optimization

- Use hydraulic model and pressure/flow sensors
- Need knowledge of demands
- Estimate leaks by matching model predictions with sensor readings
- Suspicious areas
- Targeted use of high-freq sensing equipment

Leak Localization

- Estimate demands at service connections
 Census data, Billing records, Mapping data
- Use, or develop, calibrated network model
 - -Total supply and demand amounts
 - -Pressure and/or flow measurements
- State Estimation
 - -Demands as the estimated state
- Residual Analysis
 - -Large negative residuals indicate non-revenue water
 - -Correlated residuals due to all demands impacted by leak
 - -Cluster network into areas impacted by leak

- Fusco, Eck and McKenna, 2014, Bad Data Analysis with Sparse Sensors for Leak Localisation in Water Distribution Networks, International Conference on Pattern Recognition
- Fusco, Eck and McKenna, 2014, Identifying leakage likelihood using state estimation and bad data identification methods, *Water Loss Conference*
- McKenna, Fusco and Eck, 2013, Water Demand Pattern Classification From Smart Meter Data, Computing and Control for the Water Industry

 © 2015 IBM Corporation

Our solution: Demand Modeling, State Estimation and Residual Analysis (2)

© 2015 IBM Corporation

Residual Analysis (1): Identify network areas

- Residuals are difference between measured (expected) and estimated hydraulic quantities $\frac{1}{2}$
 - Leakage produces *demand residuals* ("unexpected demand") \rightarrow
- Depending on the position/number of sensors and on the level of uncertainty
 - Groups of residuals may be strongly correlated

© 2015 IBM Corporation

- Leaks at different locations look "similar" with respect to sensor data and produce "similar" residual patterns
- Advanced statistical analysis of residuals identifies these groups (network areas)

$r \triangleq y - h(\hat{x})$

Example 2: Distributed Renewable Energy Forecasting

http://www.bloomberg.com/news/articles/2016-05-16/germany-just-got-almost-all-of-its-power-from-renewable-energy

Energy

"There will be more changes in the next 10 years than there have been in the last 100! We are in an age of discovery; we must challenge the boundaries of prevailing wisdom!"

 Jeff Martin, CEO of San Diego Gas and Electric, DistribuTech keynote, February 2015

Outline

Trends

Rise of Renewables IOT and Big Data Uncertainty

Examples of Data-Driven Operations

What's next?

Rise of Renewables

- Growth. In the OECD countries renewables account for virtually all net additions to power capacity
- Solar. Further decline in the cost of PV technology will drive a \$3.7 trillion surge in investment in solar, both large-scale and small-scale.
- Distributed. Some \$2.2 trillion of this investment will go on local PV systems, enabling consumers and businesses the ability to generate and store electricity

Sources:

- 2105 Bloomberg New Energy report: <u>http://www.bloomberg.com/company/new-energy-outlook/</u>
- Executive Summary of IEA Renewable Energy Medium Term Market Report 2015
- Graphic: <u>http://www.skepticalscience.com/ipcc-report-renewable-energy.html</u>

© 2015 IBM Corporation

IBM Research - Ireland Data explosion dwarfs "traditional" data sources

- <u>Future business model</u> depends on making use of this data rather than selling kWHrs
- We need demand to follow supply by exploiting flexibility in the demand

Uncertainty: Demand

$$p(x) = \int e(t)dt \implies p(x) = \int e(t) \cdot c(t)dt$$

Increasingly distributed nature of electricity production and consumption leads to increasingly distributed (personalized) pricing

Uncertainty and Predictive Models

 For Distributions System Operators and Transmission System Operators, uncertainty in power generation and demands are significant under distributed generation scenarios

Predictive models must also quantify uncertainty

Example 2: Distributed Renewable Energy Forecasting

 Work with a regional transmission utility in the US —Serving 17 distribution utilities

Strong government incentives to deploy rooftop solar (PV)
 As much as 10 percent of electricity from solar (2015)

Questions regarding rooftop PV

- –Where is it in the grid?
- –How much is there?
- -How much energy will be produced tomorrow?
- –What is the uncertainty in that forecast?

Solar Forecasting Example (State Level)

We <u>combine physical models with machine learning</u> to model PV generation at town, county and state level.

6000

2000

Jun 09

Jun 14

кWh/h 4000

The physical model uses a solar position algorithm, irradiance and temperature data and an Irradiance-to-power model.

This physical model is combined with a Generalized Additive Model (GAM), trained on measured PV power data.

PV Power

Time

-73.5 -73.0 -72.5 -72.0 -71.5 Longitude

Data Driven

Bottom Up Approach

Data Curation

Predicting Demands (Substation Scale)

The contribution of PV generation can be significant at the substation level.

This can cause reverse power flows.

Accurately predicted by our models.

- Distributed Generation and Demand
- Bottom Up
- Data Driven
- ~1500 models

Residual Demand = Delivered - Returned

Prediction Complexity

The impact of increases in generation capacity and snowfall are not well captured by physical models. Machine learning helps.

We can predict PV generation with an error of better than 10% over a dynamic range of factor 10

Nature of Distributed Energy

Smart Meter Analytics

Total PV capacity in Vermont:

- Based on <u>AMI</u> and available SCADA
- Missing: approx. 5-10 MW distributed PV

July 1-31, 2015

Example 3: Weather Forecasting

Weather forecasts for critical business operations

- -Renewable energy
- -Insurance
- -Aviation
- -Agriculture

Impacts of weather

- -Decision making from forecasts
- -Multi-dimensional vs. One-dimensional impact

IBM Acquired The Weather Company in January 2016 TWC is a *data* company Internet of Things (IoT) Spatial-Temporal Data Global forecasting capability Business models: B2C and B2B

High-Resolution Weather Forecasting

Goal: High-resolution weather forecasting at specific time and location

- -Spatial scales of 1x1 km and temporal scale of 10 minute time steps
- -Forecasts out to 72 hours in advance
- Approach:
 - -3D physics model of weather
 - -Assimilation of real time observational data into forecasts
 - -Cloud-based implementation
- Requirements:
 - -Coarse-scale forecasts (e.g., NOAA, ECMWF)
 - -Observational data
- Result:
 - -High resolution, on-demand forecasts anywhere in the world
 - -Applications for flood forecasting and storm water runoff

Deep Thunder Example: Dublin Ireland

Forecast of clouds

Color scale shows cumulative rainfall on ground

Arrows show direction of wind and velocity (color scale)

Cognitive Computing

Individualized, ranked, evidence based treatment options at the point of care. Watson extracts patient case attributes and provides supporting rationale for the treatment options.

Other innovative recipes conjured up by Watson include coconut-flavored Caribbean Snapper Fish & Chips, Belgian Bacon Pudding, and the Austrian Chocolate Burrito with lean ground beef and two ounces of dark chocolate.

_	 	_	_
	 _		_
_	_	_	_
_	_		
_	<u> </u>		
_	_		
	 _	_	

Cognitive Computing:	Urban Systems				
Road Construction	Asset Conditio	n Leak	Leakage Rates Traffic Jam		
Population Growth		How	How much snow?		
Interest Rates	How do I be	How do I best operate		Consumer Demands	
Citizen Complaints	the city today? How do I make decisions		Netwo	ork Flows	
Rainfall	today to impro in the f	ve operations future	Regula	atory Constraints	
River Flows	Tank Levels	Elec	Electricity Prices		
Maintenance Schedules		Security	Storr	n Water Drains	
Bus Driver Strike		Eff	Effluent Quality		

Summary

- Models are required for predictions
 - -Combining different classes of models for improved predictions
- Data + (Physics) Models
 - -Water: Aging infrastructure, more data, extend lifetime
 - -Energy: More solar, more data, uncertainty remains
 - –Weather: Storms impact multiple infrastructure systems
- Cognitive (Self-learning) Models

Sean A. McKenna seanmcke@ie.ibm.com

